Abstract

Multivariate latent class profile analysis (MLCPA) is a useful tool for exploring the stage-sequential process of multiple latent class variables, but the inference can be challenging due to the high-dimensional latent structure of the model. In this paper, a Bayesian approach via Markov chain Monte Carlo (MCMC) is proposed for MLCPA as an alternative to the maximum-likelihood (ML) method. Compared to the ML solution, Bayesian estimates are less sensitive to the set of initial values as well as easier to obtain standard errors. We also address issues in MCMC such as label-switching problem with a dynamic data-dependent prior and computational complexity with a recursive formula. Simulation studies revealed the validity and efficiency of the proposed algorithm. An empirical analysis of MLCPA using the National Longitudinal Survey of Youth 97 (NLSY97) identified a small number of representative developmental progressions of adolescent depression and substance use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.