Abstract

The main goal in this paper is to develop and apply stochastic simulation techniques for GARCH models with multivariate skewed distributions using the Bayesian approach. Both parameter estimation and model comparison are not trivial tasks and several approximate and computationally intensive methods (Markov chain Monte Carlo) will be used to this end. We consider a flexible class of multivariate distributions which can model both skewness and heavy tails. Also, we do not fix tail behaviour when dealing with fat tail distributions but leave it subject to inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.