Abstract

Existing methods for the analysis of data involving assay data subject to measurement error are deficient. In particular, classical calibration methods have been shown to yield invalid inferences unless the measurement error is small. Regression calibration, a form of conditional mean imputation, has better properties, but is not well suited to adjusting for heteroscedastic measurement error. Bayesian multiple imputation is less common for measurement error problems than for missing data, but we argue that it represents an attractive option for measurement error, providing superior inferences to existing methods and a convenient way of adjusting for measurement error using simple complete-data methods and multiple imputation combining rules. It also provides a convenient approach to limit of quantification issues, another area where current approaches are in our view deficient. We review some recent work that develops multiple imputation methods for assay data, focusing particularly on three key aspects: ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.