Abstract

In the framework of generalized extreme value (GEV) distribution, the frequentist and Bayesian methods have been used to analyse the extremes of annual maxima wind speed recorded by automatic weather stations in Cape Town, Western Cape, South Africa. In the frequentist approach, the GEV distribution parameters were estimated using maximum likelihood, whereas in the Bayesian method the Markov Chain Monte Carlo technique with the Metropolis–Hastings algorithm was used. The results show that the GEV model with trend in the location parameter appears to be a better model for annual maxima data. The paper also discusses a method to construct informative priors empirically using historical data of the underlying process from other weather stations. The results from the Bayesian analysis show that posterior inference might be affected by the choice of priors and hence by the distance between a weather station used to formulate the priors and the point of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.