Abstract

One of the greatest data analysis challenges for the Laser Interferometer Space Antenna (LISA) is the need to account for a large number of gravitational wave signals from compact binary systems expected to be present in the data. We introduce the basis of a Bayesian method that we believe can address this challenge, and demonstrate its effectiveness on a simplified problem involving one hundred synthetic sinusoidal signals in noise. We use a reversible jump Markov chain Monte Carlo technique to infer simultaneously the number of signals present, the parameters of each identified signal, and the noise level. Our approach therefore tackles the detection and parameter estimation problems simultaneously, without the need to evaluate formal model selection criteria, such as the Akaike Information Criterion or explicit Bayes factors. The method does not require a stopping criterion to determine the number of signals, and produces results which compare very favorably with classical spectral techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.