Abstract
AbstractThis paper presents a Bayesian network model to assess the vulnerability of the flood control infrastructure and to simulate failure cascade based on the topological structure of flood control networks along with hydrological information gathered from sensors. Two measures are proposed to characterize the flood control network vulnerability and failure cascade: (a) node failure probability (NFP), which determines the failure likelihood of each network component under each scenario of rainfall event, and (b) failure cascade susceptibility, which captures the susceptibility of a network component to failure due to failure of other links. The proposed model was tested in both single watershed and multiple watershed scenarios in Harris County, Texas using historical data from three different flooding events, including Hurricane Harvey in 2017. The proposed model was able to identify the most vulnerable flood control network segments prone to flooding in the face of extreme rainfall. The framework and results furnish a new tool and insights to help decision‐makers to prioritize infrastructure enhancement investments and actions. The proposed Bayesian network modeling framework also enables simulation of failure cascades in flood control infrastructures, and thus could be used for scenario planning as well as near‐real‐time inundation forecasting to inform emergency response planning and operation, and hence improve the flood resilience of urban areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer-Aided Civil and Infrastructure Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.