Abstract

In this chapter, we focus on Bayesian model selection for biological dynamical systems. We do not present an overview over existing methods, but showcase their comparison and the application to ordinary differential equation (ODE) systems, as well as the inference of the parameters in the ODE system. For this, our method of choice is the Bayes factor, computed by Thermodynamic Integration. We first present several model selection methods, both alternatives to the Bayes factor as well as several methods for calculating the Bayes factor, foremost among them said Thermodynamic Integration. As a simple example for the selection problem, we resort to a choice between normal distributions, which is analytically tractable. We apply our chosen method to a medium sized ODE model selection problem from radiation science and demonstrate how predictions can be drawn from the model selection results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.