Abstract
Global optical flow techniques minimize a mixture of two terms: a data term relating the observable signal with the optical flow, and a regularization term imposing prior knowledge/assumptions on the solution. A large number of different data terms have been developed since the first global optical flow estimator proposed by Horn and Schunk [1]. Recently [2], these data terms have been classified with respect to their properties. Thus, for image sequences where certain properties about image as well as motion characteristics are known in advance, the appropriate data term can be chosen from this classification. In this contribution, we deal with the situation where the optimal data term is not known in advance. We apply the Bayesian evidence framework for automatically choosing the optimal relative weight between two data terms as well as the regularization term based only on the given input signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.