Abstract

It is well known that volatility asymmetry exists in financial markets. This paper reviews and investigates recently developed techniques for Bayesian estimation and model selection applied to a large group of modern asymmetric heteroskedastic models. These include the GJR-GARCH, threshold autoregression with GARCH errors, threshold GARCH and Double threshold heteroskedastic model with auxiliary threshold variables. Further we briefly review recent methods for Bayesian model selection, such as: reversible jump Markov chain Monte Carlo, Monte Carlo estimation via independent sampling from each model and importance sampling methods. Seven heteroskedastic models are then compared, for three long series of daily Asian market returns, in a model selection study illustrating the preferred model selection method. Major evidence of nonlinearity in mean and volatility is found, with the preferred model having a weighted threshold variable of local and international market news.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.