Abstract
ABSTRACTWe extend the Bayesian Model Averaging (BMA) framework to dynamic panel data models with endogenous regressors using a Limited Information Bayesian Model Averaging (LIBMA) methodology. Monte Carlo simulations confirm the asymptotic performance of our methodology both in BMA and selection, with high posterior inclusion probabilities for all relevant regressors, and parameter estimates very close to their true values. In addition, we illustrate the use of LIBMA by estimating a dynamic gravity model for bilateral trade. Once model uncertainty, dynamics, and endogeneity are accounted for, we find several factors that are robustly correlated with bilateral trade. We also find that applying methodologies that do not account for either dynamics or endogeneity (or both) results in different sets of robust determinants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.