Abstract
Statistical modeling is a key component in the extraction of physical results from lattice field theory calculations. Although the general models used are often strongly motivated by physics, many model variations can frequently be considered for the same lattice data. Model averaging, which amounts to a probability-weighted average over all model variations, can incorporate systematic errors associated with model choice without being overly conservative. We discuss the framework of model averaging from the perspective of Bayesian statistics, and give useful formulae and approximations for the particular case of least-squares fitting, commonly used in modeling lattice results. In addition, we frame the common problem of data subset selection (e.g. choice of minimum and maximum time separation for fitting a two-point correlation function) as a model selection problem and study model averaging as a straightforward alternative to manual selection of fit ranges. Numerical examples involving both mock and real lattice data are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.