Abstract
This study introduces Bayesian model averaging (BMA) to deal with model structure uncertainty in groundwater management decisions. A robust optimized policy should take into account model parameter uncertainty as well as uncertainty in imprecise model structure. Due to a limited amount of groundwater head data and hydraulic conductivity data, multiple simulation models are developed based on different head boundary condition values and semivariogram models of hydraulic conductivity. Instead of selecting the best simulation model, a variance-window-based BMA method is introduced to the management model to utilize all simulation models to predict chloride concentration. Given different semivariogram models, the spatially correlated hydraulic conductivity distributions are estimated by the generalized parameterization (GP) method that combines the Voronoi zones and the ordinary kriging (OK) estimates. The model weights of BMA are estimated by the Bayesian information criterion (BIC) and the variance window in the maximum likelihood estimation. The simulation models are then weighted to predict chloride concentrations within the constraints of the management model. The methodology is implemented to manage saltwater intrusion in the “1,500-foot” sand aquifer in the Baton Rouge area, Louisiana. The management model aims to obtain optimal joint operations of the hydraulic barrier system and the saltwater extraction system to mitigate saltwater intrusion. A genetic algorithm (GA) is used to obtain the optimal injection and extraction policies. Using the BMA predictions, higher injection rates and pumping rates are needed to cover more constraint violations, which do not occur if a single best model is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.