Abstract

We study the problem of estimating the mode and maximum of an unknown regression function in the presence of noise. We adopt the Bayesian approach by using tensor-product B-splines and endowing the coefficients with Gaussian priors. In the usual fixed-in-advanced sampling plan, we establish posterior contraction rates for mode and maximum and show that they coincide with the minimax rates for this problem. To quantify estimation uncertainty, we construct credible sets for these two quantities that have high coverage probabilities with optimal sizes. If one is allowed to collect data sequentially, we further propose a Bayesian two-stage estimation procedure, where a second stage posterior is built based on samples collected within a credible set constructed from a first stage posterior. Under appropriate conditions on the radius of this credible set, we can accelerate optimal contraction rates from the fixed-in-advanced setting to the minimax sequential rates. A simulation experiment shows that our Bayesian two-stage procedure outperforms single-stage procedure and also slightly improves upon a non-Bayesian two-stage procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.