Abstract

In the last decade, numerous genome-wide linkage and association studies of complex diseases have been completed. The critical question remains of how to best use this potentially valuable information to improve study design and statistical analysis in current and future genetic association studies. With genetic effect size for complex diseases being relatively small, the use of all available information is essential to untangle the genetic architecture of complex diseases. One promising approach to incorporating prior knowledge from linkage scans, or other information, is to up- or down-weight P-values resulting from genetic association study in either a frequentist or Bayesian manner. As an alternative to these methods, we propose a fully Bayesian mixture model to incorporate previous knowledge into on-going association analysis. In this approach, both the data and previous information collectively inform the association analysis, in contrast to modifying the association results (P-values) to conform to the prior knowledge. By using a Bayesian framework, one has flexibility in modeling, and is able to comprehensively assess the impact of model specification on posterior inferences. We illustrate the use of this method through a genome-wide linkage study of colorectal cancer, and a genome-wide association study of colorectal polyps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.