Abstract

Economic data are collected at various frequencies but econometric estimation typically uses the coarsest frequency. This article develops a Gibbs sampler for estimating vector autoregression (VAR) models with mixed and irregularly sampled data. The Gibbs sampler allows efficient likelihood inference and uses simple conjugate posteriors even in high-dimensional parameter spaces, avoiding a non-Gaussian likelihood surface even when the Kalman filter applies. Two examples studying the relationship between financial data and the real economy illustrate the methodology and demonstrates efficiency gains from the mixed frequency estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.