Abstract

This study explores Bayesian methods for handling compound stage–discharge relationships, a problem which arises in many natural rivers. It is assumed: (1) the stage–discharge relationship in each rating curve segment is a power-law with a location parameter, or zero-plane displacement; (2) the segment transitions are abrupt and continuous; and (3) multiplicative measurement errors are of equal variance. The rating curve fitting procedure is then formulated as a piecewise regression problem where the number of segments and the associated changepoints are assumed unknown. Procedures are developed for describing both global and site-specific prior distributions for all rating curve parameters, including the changepoints. Estimation and uncertainty analysis is evaluated using Markov chain Monte Carlo simulation (MCMC) techniques. The first model explored accounts for parameter and model uncertainties in the interpolated area, i.e. within the range of available stage–discharge measurements. A second model is constructed in an attempt to include the uncertainty in extrapolation, which is necessary when the rating curve is used to estimate discharges beyond the highest or lowest measurement. This is done by assuming that the rate of changepoints both inside and outside the measured area follows a Poisson process. The theory is applied to actual data from Norwegian gauging stations. The MCMC solutions give results that appear sensible and useful for inferential purposes, though the latter model needs further efforts in order to obtain a more efficient simulation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.