Abstract

In impromptu or ad hoc settings, participating players are precluded from precoordination. Subsequently, each player's own model is private and includes some uncertainty about the others' types or behaviors. Harsanyi's formulation of a Bayesian game lays emphasis on this uncertainty while the players each play exactly one turn. We propose a new game-theoretic framework where Bayesian players engage in a Markov game and each has private but imperfect information regarding other players' types. Consequently, we construct player types whose structure is explicit and includes a finite level belief hierarchy instead of utilizing Harsanyi's abstract types and a common prior distribution. We formalize this new framework and demonstrate its effectiveness on two standard ad hoc teamwork domains involving two or more ad hoc players.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.