Abstract

This article proposes a Bayesian spatio-temporal model for source reconstruction of M/EEG data. The usual two-level probabilistic model implicit in most distributed source solutions is extended by adding a third level which describes the temporal evolution of neuronal current sources using time-domain General Linear Models (GLMs). These comprise a set of temporal basis functions which are used to describe event-related M/EEG responses. This places M/EEG analysis in a statistical framework that is very similar to that used for PET and fMRI. The experimental design can be coded in a design matrix, effects of interest characterized using contrasts and inferences made using posterior probability maps. Importantly, as is the case for single-subject fMRI analysis, trials are treated as fixed effects and the approach takes into account between-trial variance, allowing valid inferences to be made on single-subject data. The proposed probabilistic model is efficiently inverted by using the Variational Bayes framework under a convenient mean-field approximation (VB-GLM). The new method is tested with biophysically realistic simulated data and the results are compared to those obtained with traditional spatial approaches like the popular Low Resolution Electromagnetic TomogrAphy (LORETA) and minimum variance Beamformer. Finally, the VB-GLM approach is used to analyze an EEG data set from a face processing experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.