Abstract

This paper proposes a disease progression model for early stage Parkinson's Disease (PD) based on DaTscan images. The model has two novel aspects: first, the model is fully coupled across the two caudates and putamina. Second, the model uses a new constraint called model mirror symmetry (MMS). A full Bayesian analysis, with collapsed Gibbs sampling using conjugate priors, is used to obtain posterior samples of the model parameters. The model identifies PD progression subtypes and reveals novel fast modes of PD progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.