Abstract

Many applications in wireless sensor networks perform localization of nodes over an extended period of time. Optimal selection algorithm poses new challenges to the overall transmission power levels for target detection, and thus, localized energy optimized sensor management strategies are necessary for improving the accuracy of target tracking. In this chapter, a proposal plan to develop a Bayesian localized energy optimized sensor distribution scheme for efficient target tracking in wireless sensor network is designed. The sensor node localization is done with Bayesian average, which estimates the sensor node's energy optimality. Then the sensor nodes are localized and distributed based on the Bayesian energy estimate for efficient target tracking. The sensor node distributional strategy improves the accuracy of identifying the targets to be tracked quickly. The performance is evaluated with parameters such as accuracy of target tracking, energy consumption rate, localized node density, and time for target tracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.