Abstract
We develop a Bayesian local influence procedure for generalized failure time models with latent variables and multivariate censored data. We propose to use the penalized splines (P-splines) approach to formulate the unknown functions of the proposed models. We assess the effects of minor perturbations to individual observations, the prior distributions of parameters, and the sampling distribution on statistical inference through various perturbation schemes. The first-order local influence measure is used to quantify the degree of minor perturbations to different aspects of a statistical model with the use of Bayes factor as an objective function. Simulation studies show that the empirical performance of the Bayesian local influence procedure is satisfactory. An application to a study of renal disease for type 2 diabetes patients is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.