Abstract
ABSTRACTThis work treats non-parametric estimation of multivariate probability mass functions, using multivariate discrete associated kernels. We propose a Bayesian local approach to select the matrix of bandwidths considering the multivariate Dirac Discrete Uniform and the product of binomial kernels, and treating the bandwidths as a diagonal matrix of parameters with some prior distribution. The performances of this approach and the cross-validation method are compared using simulations and real count data sets. The obtained results show that the Bayes local method performs better than cross-validation in terms of integrated squared error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.