Abstract

Once the design of artificial neural networks (ANN) may require the optimization of numerical and structural parameters, bio-inspired algorithms have been successfully applied to accomplish this task, since they are population-based search strategies capable of dealing successfully with complex and large search spaces, avoiding local minima. In this paper, we propose the use of an artificial immune system for learning feedforward ANN's topologies. Besides the number of neurons in the hidden layer, the algorithm also optimizes the type of activation function for each node. The use of a Bayesian framework to infer the weights and weight decay terms as well as to perform model selection allows us to find neural models with high generalization capability and low complexity, once the Occam's razor principle is incorporated into the framework. We demonstrate the applicability of the proposal on seven classification problems and promising results were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.