Abstract

We study the (perfect Bayesian) equilibrium of a sequential learning model over a general social network. Each individual receives a signal about the underlying state of the world, observes the past actions of a stochastically generated neighbourhood of individuals, and chooses one of two possible actions. The stochastic process generating the neighbourhoods defines the network topology. We characterize pure strategy equilibria for arbitrary stochastic and deterministic social networks and characterize the conditions under which there will be asymptotic learning—convergence (in probability) to the right action as the social network becomes large. We show that when private beliefs are unbounded (meaning that the implied likelihood ratios are unbounded), there will be asymptotic learning as long as there is some minimal amount of “expansion in observations”. We also characterize conditions under which there will be asymptotic learning when private beliefs are bounded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call