Abstract
A novel sparse channel state information (CSI) estimation scheme is proposed for orthogonal time frequency space (OTFS) modulated systems, in which the pilots are directly transmitted over the time-frequency (TF)-domain grid for estimating the delay-Doppler (DD)-domain CSI. The proposed CSI estimation model leads to a reduction in the pilot overhead as well as the training duration required. Furthermore, it does not require a DD-domain guard interval between the pilot and data symbols, hence increasing the bandwidth efficiency. A novel Bayesian learning (BL) framework is proposed for CSI acquisition, which exploits the DD-domain sparsity for improving the estimation accuracy in comparison to the conventional minimum mean squared error (MMSE)-based scheme. A low-complexity linear MMSE detector is used in the subsequent data detection phase. Our simulation results demonstrate the performance improvement of the proposed BL-based scheme over the conventional MMSE-based scheme as well as over other existing sparse estimation schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.