Abstract

A Bayesian multi-category kernel classification method is proposed. The algorithm performs the classification of the projections of the data to the principal axes of the feature space. The advantage of this approach is that the regression coefficients are identifiable and sparse, leading to large computational savings and improved classification performance. The degree of sparsity is regulated in a novel framework based on Bayesian decision theory. The Gibbs sampler is implemented to find the posterior distributions of the parameters, thus probability distributions of prediction can be obtained for new data points, which gives a more complete picture of classification. The algorithm is aimed at high dimensional data sets where the dimension of measurements exceeds the number of observations. The applications considered in this paper are microarray, image processing and near-infrared spectroscopy data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.