Abstract

Estimation of low or high conditional quantiles is called for in many applications, but commonly encountered data sparsity at the tails of distributions makes this a challenging task. We develop a Bayesian joint-quantile regression method to borrow information across tail quantiles through a linear approximation of quantile coefficients. Motivated by a working likelihood linked to the asymmetric Laplace distributions, we propose a new Bayesian estimator for high quantiles by using a delayed rejection and adaptive Metropolis and Gibbs algorithm. We demonstrate through numerical studies that the proposed estimator is generally more stable and efficient than conventional methods for estimating tail quantiles, especially at small and modest sample sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.