Abstract
In educational and psychological research, the logit and probit links are often used to fit the binary item response data. The appropriateness and importance of the choice of links within the item response theory (IRT) framework has not been investigated yet. In this paper, we present a family of IRT models with generalized logit links, which include the traditional logistic and normal ogive models as special cases. This family of models are flexible enough not only to adjust the item characteristic curve tail probability by two shape parameters but also to allow us to fit the same link or different links to different items within the IRT model framework. In addition, the proposed models are implemented in the Stan software to sample from the posterior distributions. Using readily available Stan outputs, the four Bayesian model selection criteria are computed for guiding the choice of the links within the IRT model framework. Extensive simulation studies are conducted to examine the empirical performance of the proposed models and the model fittings in terms of "in-sample" and "out-of-sample" predictions based on the deviance. Finally, a detailed analysis of the real reading assessment data is carried out to illustrate the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.