Abstract

Agent-based methods allow for defining simple rules that generate complex group behaviors. The governing rules of such models are typically set a priori, and parameters are tuned from observed behavior trajectories. Instead of making simplifying assumptions across all anticipated scenarios, inverse reinforcement learning provides inference on the short-term (local) rules governing long-term behavior policies by using properties of a Markov decision process. We use the computationally efficient linearly-solvable Markov decision process to learn the local rules governing collective movement for a simulation of the selfpropelled-particle (SPP) model and a data application for a captive guppy population. The estimation of the behavioral decision costs is done in a Bayesian framework with basis function smoothing. We recover the true costs in the SPP simulation and find the guppies value collective movement more than targeted movement toward shelter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.