Abstract

Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory. We give here a complete solution in the special case of linear networks with output dimension one trained using zero noise Bayesian inference with Gaussian weight priors and mean squared error as a negative log-likelihood. For any training dataset, network depth, and hidden layer widths, we find non-asymptotic expressions for the predictive posterior and Bayesian model evidence in terms of Meijer-G functions, a class of meromorphic special functions of a single complex variable. Through novel asymptotic expansions of these Meijer-G functions, a rich new picture of the joint role of depth, width, and dataset size emerges. We show that linear networks make provably optimal predictions at infinite depth: the posterior of infinitely deep linear networks with data-agnostic priors is the same as that of shallow networks with evidence-maximizing data-dependent priors. This yields a principled reason to prefer deeper networks when priors are forced to be data-agnostic. Moreover, we show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth, elucidating the salutary role of increased depth for model selection. Underpinning our results is a novel emergent notion of effective depth, given by the number of hidden layers times the number of data points divided by the network width; this determines the structure of the posterior in the large-data limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.