Abstract

We investigate the initiation phase of the 2014 Mw8.1 Iquique earthquake in northern Chile. In particular, we focus on the month preceding the mainshock, a time period known to exhibit an intensification of the seismic and aseismic activity in the region. The goal is to estimate the time-evolution and partitioning of seismic and aseismic slip during the preparatory phase of the mainshock. To do so, we develop a Bayesian inversion scheme to infer the spatio-temporal evolution of pre-slip from position time-series along with the corresponding uncertainty. To extract the aseismic component to the pre-seismic motion, we correct geodetic observations from the displacement induced by foreshocks. We find that aseismic slip accounts for ∼80 percents of the slip budget. That aseismic slip takes the form of a slow-slip events occurring between 20 to 5 days before the future mainshock. This time-evolution is not consistent with self-accelerating fault slip, a model that is often invoked to explain earthquake nucleation. Instead, the slow-slip event seems to have interacted with the foreshock sequence such that the foreshocks contributed to the arrest of aseismic slip. In addition, we observe some evidence of late self-accelerating slip, but associated with large uncertainties, making it difficult to assess its reliability from our observations alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call