Abstract

We develop a Bayesian approach for estimating multinomial cell probabilities using a smoothed Dirichlet prior. The most important feature of the smoothed Dirichlet prior is that it forces the probabilities of neighboring cells to be closer to each other than under the standard Dirichlet prior. We propose a shrinkage-type estimator using this Bayesian approach to estimate multinomial cell probabilities. The proposed estimator allows us to borrow information across other multinomial populations and cell categories simultaneously to improve the estimation of cell probabilities, especially in a context of sparsity with ordered categories. We demonstrate the proposed approach using COVID-19 data and estimate the distribution of positive COVID-19 cases across age groups for Canadian health regions. Our approach allows improved estimation in smaller health regions where few cases have been observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.