Abstract

ABSTRACT Stellar models utilizing 1D, heuristic theories of convection fail to adequately describe the energy transport in superadiabatic layers. The improper modelling leads to well-known discrepancies between observed and predicted oscillation frequencies for stars with convective envelopes. Recently, 3D hydrodynamic simulations of stellar envelopes have been shown to facilitate a realistic depiction of superadiabatic convection in 1D stellar models. The resulting structural changes of the boundary layers have been demonstrated to impact not only the predicted oscillation spectra but evolution tracks as well. In this paper, we quantify the consequences that the change in boundary conditions has for stellar parameter estimates of main-sequence stars. For this purpose, we investigate two benchmark stars, Alpha Centauri A and B, using Bayesian inference. We show that the improved treatment of turbulent convection makes the obtained 1D stellar structures nearly insensitive to the mixing length parameter. By using 3D simulations in 1D stellar models, we hence overcome the degeneracy between the mixing length parameter and other stellar parameters. By lifting this degeneracy, the inclusion of 3D simulations has the potential to yield more robust parameter estimates. In this way, a more realistic depiction of superadiabatic convection has important implications for any field that relies on stellar models, including the study of the chemical evolution of the Milky Way Galaxy and exoplanet research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.