Abstract

The smooth transition autoregressive (STAR)(k)–GARCH(l, m) model is a non-linear time series model that is able to account for changes in both regime and volatility respectively. The model can be widely applied to analyse the dynamic behaviour of data exhibiting these two phenomenons in areas such as finance, hydrology and climate change. The main aim of this paper is to perform a Bayesian analysis of STAR(k)–GARCH(l, m) models. The estimation procedure will include estimation of the mean and variance coefficient parameters, the parameters of the transition function, as well as the model orders (k, l, m). To achieve this aim, the joint posterior distribution of the model orders, coefficient and implicit parameters in the logistic STAR(k)–GARCH(l, m) model is presented. The conditional posterior distributions are then derived, followed by the design of a posterior simulator using a combination of MCMC algorithms which includes Metropolis–Hastings, Gibbs Sampler and Reversible Jump MCMC algorithms. Following this are extensive simulation studies and a case study presenting the methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.