Abstract
Structural change in any time series is practically unavoidable, and thus correctly detecting breakpoints plays a pivotal role in statistical modelling. This research considers segmented autoregressive models with exogenous variables and asymmetric GARCH errors, GJR-GARCH and exponential-GARCH specifications, which utilize the leverage phenomenon to demonstrate asymmetry in response to positive and negative shocks. The proposed models incorporate skew Student-t distribution and prove the advantages of the fat-tailed skew Student-t distribution versus other distributions when structural changes appear in financial time series. We employ Bayesian Markov Chain Monte Carlo methods in order to make inferences about the locations of structural change points and model parameters and utilize deviance information criterion to determine the optimal number of breakpoints via a sequential approach. Our models can accurately detect the number and locations of structural change points in simulation studies. For real data analysis, we examine the impacts of daily gold returns and VIX on S&P 500 returns during 2007–2019. The proposed methods are able to integrate structural changes through the model parameters and to capture the variability of a financial market more efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.