Abstract
Temporal logics are useful for providing concise descriptions of system behavior, and have been successfully used as a language for goal definitions in task planning. Prior works on inferring temporal logic specifications have focused on "summarizing" the input dataset - i.e., finding specifications that are satisfied by all plan traces belonging to the given set. In this paper, we examine the problem of inferring specifications that describe temporal differences between two sets of plan traces. We formalize the concept of providing such contrastive explanations, then present BayesLTL - a Bayesian probabilistic model for inferring contrastive explanations as linear temporal logic (LTL) specifications. We demonstrate the robustness and scalability of our model for inferring accurate specifications from noisy data and across various benchmark planning domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.