Abstract
Consider a random sample X1, X2,…, Xn, from a normal population with unknown mean and standard deviation. Only the sample size, mean and range are recorded and it is necessary to estimate the unknown population mean and standard deviation. In this paper the estimation of the mean and standard deviation is made from a Bayesian perspective by using a Markov Chain Monte Carlo (MCMC) algorithm to simulate samples from the intractable joint posterior distribution of the mean and standard deviation. The proposed methodology is applied to simulated and real data. The real data refers to the sugar content (oBRIX level) of orange juice produced in different countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.