Abstract

SummaryWe propose and fit a Bayesian model to infer palaeoclimate over several thousand years. The data that we use arise as ancient pollen counts taken from sediment cores together with radiocarbon dates which provide (uncertain) ages. When combined with a modern pollen–climate data set, we can calibrate ancient pollen into ancient climate. We use a normal–inverse Gaussian process prior to model the stochastic volatility of palaeoclimate over time, and we present a novel modularized Markov chain Monte Chain algorithm to enable fast computation. We illustrate our approach with a case-study from Sluggan Moss, Northern Ireland, and provide an R package, Bclim, for use at other sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.