Abstract

This paper studies Bayesian inference for θ=P(X<Y) in the case where the marginal distributions of X and Y belong to classes of distributions obtained by skewing scale mixtures of normals. We separately address the cases where X and Y are independent or dependent random variables. Dependencies between X and Y are modelled using a Gaussian copula. Noninformative benchmark and vague priors are provided for these scenarios and conditions for the existence of the posterior distribution of θ are presented. We show that the use of the Bayesian models proposed here is also valid in the presence of set observations. Examples using simulated and real data sets are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.