Abstract

MCMC algorithm is widely used in parameters' estimation of GARCH-type models. However, the existing algorithms are either not easy to implement or not fast to run. In this paper, Hamiltonian Monte Carlo (HMC) algorithm, which is easy to perform and also efficient to draw samples from posterior distributions, is firstly proposed to estimate for the Gaussian mixed GARCH-type models. And then, based on the estimation of HMC algorithm, the forecasting of volatility prediction is investigated. Through the simulation experiments, the HMC algorithm is more efficient and flexible than the Griddy-Gibbs sampler, and the credibility interval of forecasting for volatility prediction is also more accurate. A real application is given to support the usefulness of the proposed HMC algorithm well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.