Abstract
Selecting proper rate equations for the kinetic models is essential to quantify biotransformation processes in the environment. Bayesian model selection method can be used to evaluate the candidate models. However, comparisons of all plausible models can result in high computational cost, while limiting the number of candidate models may lead to biased results. In this work, we developed an integrated Bayesian method to simultaneously perform model selection and parameter estimation by using a generalized rate equation. In the approach, the model hypotheses were represented by discrete parameters and the rate constants were represented by continuous parameters. Then Bayesian inference of the kinetic models was solved by implementing Markov Chain Monte Carlo simulation for parameter estimation with the mixed (i.e., discrete and continuous) priors. The validity of this approach was illustrated through a synthetic case and a nitrogen transformation experimental study. It showed that our method can successfully identify the plausible models and parameters, as well as uncertainties therein. Thus this method can provide a powerful tool to reveal more insightful information for the complex biotransformation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.