Abstract
Abstract. In this article, we estimate the parameters of a simple random network and a stochastic epidemic on that network using data consisting of recovery times of infected hosts. The SEIR epidemic model we fit has exponentially distributed transmission times with Gamma distributed exposed and infectious periods on a network where every edge exists with the same probability, independent of other edges. We employ a Bayesian framework and Markov chain Monte Carlo (MCMC) integration to make estimates of the joint posterior distribution of the model parameters. We discuss the accuracy of the parameter estimates under various prior assumptions and show that it is possible in many scientifically interesting cases to accurately recover the parameters. We demonstrate our approach by studying a measles outbreak in Hagelloch, Germany, in 1861 consisting of 188 affected individuals. We provide an R package to carry out these analyses, which is available publicly on the Comprehensive R Archive Network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.