Abstract
ABSTRACTThe agreement of different measurement methods is an important issue in several disciplines like, for example, Medicine, Metrology, and Engineering. In this article, some agreement measures, common in the literature, were analyzed from a Bayesian point of view. Posterior inferences for such agreement measures were obtained based on well-known Bayesian inference procedures for the bivariate normal distribution. As a consequence, a general, simple, and effective method is presented, which does not require Markov Chain Monte Carlo methods and can be applied considering a great variety of prior distributions. Illustratively, the method was exemplified using five objective priors for the bivariate normal distribution. A tool for assessing the adequacy of the model is discussed. Results from a simulation study and an application to a real dataset are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.