Abstract

A new distribution was developed that mixed the negative binomial (NB) and Samade distributions, called the negative binomial-Samade (NB-SA) distribution. The properties of this distribution were studied, and the newly created distribution was applied using the framework of generalized linear models to build a time series data count model. The characteristics of overdispersion and heavy-tailed distribution of the count response variables were applied in the actual dataset modeling. Distribution parameters and the regression coefficient were estimated using a Bayesian approach. Results showed that the NB-SA model had significantly the highest efficiency compared with the classical NB and Poisson models for analyzing factors influencing the daily number of COVID-19 deaths in Thailand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.