Abstract

As is well known to us, the Black-Scholes (B-S) model is an important and useful mathematical model for pricing a European options contract. However, because some strict assumptions in this model are not consistent with the real financial market, there are many limitations in practical applications. This paper investigates the inverse option problems (IOP) in a fractional option pricing model, which is derived from the finite moment log-stable (FMLS) model. We identify the model coefficients such as tail index α and the implied volatility σ from the measured data by using three statistical inversion schemes which are well known as Markov Chain Monte Carlo (MCMC) algorithm, slice sampling algorithm and Hamiltonian/hybrid Monte Carlo (HMC) algorithm. Our numerical tests indicate that these Bayesian inference approaches can recover the unknown coefficients well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.