Abstract
This paper presents a three-phase Distribution System State Estimator (DSSE) based on a Bayesian inference approach to manage different sampling rates of typical sources of information present in distribution networks. Such information comes from smart meters, supervisory control and data acquisition (SCADA) measurements, phasor measurement units and typical load profiles from pseudo measurements. The temporal aspect of the measurement set is incorporated in the estimation process by using a sampling layer concept, dealing separately with each group of measurements according to the respective updating rate. A Bayesian information fusion procedure provides the final estimation. The proposed DSSE consists in a multiple stage estimator that combines a prior model for the state variables, updated by new observations from measured values in each sampling layer, through Maximum a Posteriori estimation. This work also introduces an orthogonal method for the information fusion numerical solution, to tackle the severe ill-conditioning associated with practical distribution systems. Simulations with IEEE distribution test feeders and a Brazilian real distribution feeder illustrate the features of the proposed DSSE and its applicability. By exploring the concept of credibility intervals, the method is able to detect events on the grid, such as subtle load variation and contingencies, while maintaining accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.