Abstract
Bayesian inference with deep generative prior has received considerable interest for solving imaging inverse problems in many scientific and engineering fields. The selection of the prior distribution is learned from, and therefore an important representation learning of, available prior measurements. The SA-Roundtrip, a novel deep generative prior, is introduced to enable controlled sampling generation and identify the data's intrinsic dimension. This prior incorporates a self-attention structure within a bidirectional generative adversarial network. Subsequently, Bayesian inference is applied to the posterior distribution in the low-dimensional latent space using the Hamiltonian Monte Carlo with preconditioned Crank-Nicolson (HMC-pCN) algorithm, which is proven to be ergodic under specific conditions. Experiments conducted on computed tomography (CT) reconstruction with the MNIST and TomoPhantom datasets reveal that the proposed method outperforms state-of-the-art comparisons, consistently yielding a robust and superior point estimator along with precise uncertainty quantification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.