Abstract
Abstract Image segmentation is a process of dividing the image in to some distinct regions. These regions shave specially coherent in nature and have similar attributes. This technique is widely used for image analyses and to interpret the desired feature. In this present paper, we will study about the hidden Markov random fields (HMRF) and find its expectation maximization algorithm. The main idea behind developing HMRF is to adjoin the “data faithfulness” and “model smoothness” that show very similar nature with the active contours, GVF, graph cuts, and random walks. Here we also use the HMRF-EM along with the Gaussian mixture models, and then we use it on color image segmentation process. These algorithms are implemented in MATLAB. In color image segmentation experiments, we observe that the result obtain from HMRF segmentation are much smoother then the direct k-means clustering. The segmented object is much closer to the original shape than clustering. The segmentation time for Bacteria 1, Bacteria 2, SAR and brain images are 0.35, 0.43, 0.12 and 0.12, respectively. The accuracy for Bacteria, Bacteria 2, SAR and brain images are 97.70, 98.06, 98.89 and 97.35%, respectively. Keywords: Bayesian methods, convex optimization, image segmentation, spatial mixture models, Potts Markov random field .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.