Abstract
This paper presents a Bayesian denoising method based on an anisotropic Markov Random Field (MRF) model in wavelet domain in order to improve the image denoising performance and reduce the computational complexity. The classical single-resolution image restoration method using MRFs and the maximum a posteriori (MAP) estimation is extended to the wavelet domain. To obtain the accurate MAP estimation, a novel anisotropic MRF model is proposed under this framework. As compared to the simple isotropic MRF model, this new model can capture the intrascale dependencies of wavelet coefficients significantly better. Simulation results demonstrate our proposed method has a good denoising performance while reducing the computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.