Abstract
Summary It is now possible to carry out Bayesian image segmentation from a continuum parametric model with an unknown number of regions. However, few suitable parametric models exist. We set out to model processes which have realizations that are naturally described by coloured planar triangulations. Triangulations are already used, to represent image structure in machine vision, and in finite element analysis, for domain decomposition. However, no normalizable parametric model, with realizations that are coloured triangulations, has been specified to date. We show how this must be done, and in particular we prove that a normalizable measure on the space of triangulations in the interior of a fixed simple polygon derives from a Poisson point process of vertices. We show how such models may be analysed by using Markov chain Monte Carlo methods and we present two case-studies, including convergence analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.